Aminoacyl-tRNA synthetase complexes: beyond translation.
نویسندگان
چکیده
Although aminoacyl-tRNA synthetases (ARSs) are housekeeping enzymes essential for protein synthesis, they can play non-catalytic roles in diverse biological processes. Some ARSs are capable of forming complexes with each other and additional proteins. This characteristic is most pronounced in mammals, which produce a macromolecular complex comprising nine different ARSs and three additional factors: p43, p38 and p18. We have been aware of the existence of this complex for a long time, but its structure and function have not been well understood. The only apparent distinction between the complex-forming ARSs and those that do not form complexes is their ability to interact with the three non-enzymatic factors. These factors are required not only for the catalytic activity and stability of the associated ARSs, such as isoleucyl-, methionyl-, and arginyl-tRNA synthetase, but also for diverse signal transduction pathways. They may thus have joined the ARS community to coordinate protein synthesis with other biological processes.
منابع مشابه
Mutation in Aminoacyl Trna Synthetase 1 In Autosomal Recessive Intellectual Disability
Background: Intellectual disability (ID) is one of the most common neurodevelopment disorders that caused by both environment and genetic factors. Also genetic defects have involving for approximately 50% of ID etiology, it is demonstrated that genetics play significant role in ID development. The important risk factor in most country in ID is consanguinity marriage. Iran has high frequency of ...
متن کاملAminoacyl-tRNA Synthetase Complexes in Evolution
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecul...
متن کاملAn aminoacyl-tRNA synthetase:elongation factor complex for substrate channeling in archaeal translation
Translation requires the specific attachment of amino acids to tRNAs by aminoacyl-tRNA synthetases (aaRSs) and the subsequent delivery of aminoacyl-tRNAs to the ribosome by elongation factor 1 alpha (EF-1alpha). Interactions between EF-1alpha and various aaRSs have been described in eukaryotes, but the role of these complexes remains unclear. To investigate possible interactions between EF-1alp...
متن کاملHigh-molecular-weight forms of aminoacyl-tRNA synthetases and tRNA modification enzymes in Escherichia coli.
The presence of high-molecular-weight complexes of aminoacyl-tRNA synthetases in Escherichia coli has been reported (C. L. Harris, J. Bacteriol. 169:2718-2723, 1987). In the current study, Bio-Gel A-5M gel chromatography of 105,000 x g supernatant preparations from E. coli Q13 indicated high molecular weights for both tRNA methylase (300,000) and tRNA sulfurtransferase (450,000). These tRNA mod...
متن کاملMacromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. III. Assignment of aminoacyl-tRNA synthetase activities to the polypeptide components of the complexes.
High molecular weight complexes which contained the same seven aminoacyl-tRNA synthetases specific for lie, Leu, Met, Gin, Glu, Lys, and Arg and displayed characteristic sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns composed of 11 and 10 major polypeptide components, respectively, were purified from sheep and rabbit livers. Two approaches were used to establish the correspo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 117 Pt 17 شماره
صفحات -
تاریخ انتشار 2004